St. Xavier's University, Kolkata
Fr. Arrupe Central Library
Online Public Access Catalogue

Loss models : (Record no. 9508)

MARC details
000 -LEADER
fixed length control field 10798cam a2200265 i 4500
005 - DATE & TIME
control field 20230519091651.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180712s2018 ilu ob 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2018033635
020 ## - ISBN
International Standard Book Number 9781119523734 (Adobe PDF)
020 ## - ISBN
International Standard Book Number 9781119523758 (ePub)
040 ## - CATALOGING SOURCE
Original cataloging agency S.X.U.K
041 ## - Language
Language English
082 00 - DDC NUMBER
Classification number R 368.01 KLU(LOS)Ed5
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Klugman, Stuart A.,
245 10 - TITLE STATEMENT
Title Loss models :
Sub Title from data to decisions /
Statement of responsibility Stuart A. Klugman, Society of Actuaries, Harry H. Panjer, University of Waterloo, Gordon E. Willmot, University of Waterloo.
250 ## - EDITION STATEMENT
Edition statement 5th ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc New Jersey
Name of publisher, distributor, etc Wiley
Date of publication, distribution, etc c2019
300 ## - PHYSICAL DESCRIPTION
Pages 1 online resource
500 ## - GENERAL NOTE
General note TABLE OF CONTENTS<br/>Preface xiii<br/><br/>About the Companion Website xv<br/><br/>Part I Introduction<br/><br/>1 Modeling 3<br/><br/>1.1 The Model-Based Approach 3<br/><br/>1.1.1 The Modeling Process 3<br/><br/>1.1.2 The Modeling Advantage 5<br/><br/>1.2 The Organization of This Book 6<br/><br/>2 Random Variables 9<br/><br/>2.1 Introduction 9<br/><br/>2.2 Key Functions and Four Models 11<br/><br/>2.2.1 Exercises 19<br/><br/>3 Basic Distributional Quantities 21<br/><br/>3.1 Moments 21<br/><br/>3.1.1 Exercises 28<br/><br/>3.2 Percentiles 29<br/><br/>3.2.1 Exercises 31<br/><br/>3.3 Generating Functions and Sums of Random Variables 31<br/><br/>3.3.1 Exercises 33<br/><br/>3.4 Tails of Distributions 33<br/><br/>3.4.1 Classification Based on Moments 33<br/><br/>3.4.2 Comparison Based on Limiting Tail Behavior 34<br/><br/>3.4.3 Classification Based on the Hazard Rate Function 35<br/><br/>3.4.4 Classification Based on the Mean Excess Loss Function 36<br/><br/>3.4.5 Equilibrium Distributions and Tail Behavior 38<br/><br/>3.4.6 Exercises 39<br/><br/>3.5 Measures of Risk 41<br/><br/>3.5.1 Introduction 41<br/><br/>3.5.2 Risk Measures and Coherence 41<br/><br/>3.5.3 Value at Risk 43<br/><br/>3.5.4 Tail Value at Risk 44<br/><br/>3.5.5 Exercises 48<br/><br/>Part II Actuarial Models<br/><br/>4 Characteristics of Actuarial Models 51<br/><br/>4.1 Introduction 51<br/><br/>4.2 The Role of Parameters 51<br/><br/>4.2.1 Parametric and Scale Distributions 52<br/><br/>4.2.2 Parametric Distribution Families 54<br/><br/>4.2.3 Finite Mixture Distributions 54<br/><br/>4.2.4 Data-Dependent Distributions 56<br/><br/>4.2.5 Exercises 59<br/><br/>5 Continuous Models 61<br/><br/>5.1 Introduction 61<br/><br/>5.2 Creating New Distributions 61<br/><br/>5.2.1 Multiplication by a Constant 62<br/><br/>5.2.2 Raising to a Power 62<br/><br/>5.2.3 Exponentiation 64<br/><br/>5.2.4 Mixing 64<br/><br/>5.2.5 Frailty Models 68<br/><br/>5.2.6 Splicing 69<br/><br/>5.2.7 Exercises 70<br/><br/>5.3 Selected Distributions and Their Relationships 74<br/><br/>5.3.1 Introduction 74<br/><br/>5.3.2 Two Parametric Families 74<br/><br/>5.3.3 Limiting Distributions 74<br/><br/>5.3.4 Two Heavy-Tailed Distributions 76<br/><br/>5.3.5 Exercises 77<br/><br/>5.4 The Linear Exponential Family 78<br/><br/>5.4.1 Exercises 80<br/><br/>6 Discrete Distributions 81<br/><br/>6.1 Introduction 81<br/><br/>6.1.1 Exercise 82<br/><br/>6.2 The Poisson Distribution 82<br/><br/>6.3 The Negative Binomial Distribution 85<br/><br/>6.4 The Binomial Distribution 87<br/><br/>6.5 The (š¯‘ˇ, š¯‘¸, 0) Class 88<br/><br/>6.5.1 Exercises 91<br/><br/>6.6 Truncation and Modification at Zero 92<br/><br/>6.6.1 Exercises 96<br/><br/>7 Advanced Discrete Distributions 99<br/><br/>7.1 Compound Frequency Distributions 99<br/><br/>7.1.1 Exercises 105<br/><br/>7.2 Further Properties of the Compound Poisson Class 105<br/><br/>7.2.1 Exercises 111<br/><br/>7.3 Mixed-Frequency Distributions 111<br/><br/>7.3.1 The General Mixed-Frequency Distribution 111<br/><br/>7.3.2 Mixed Poisson Distributions 113<br/><br/>7.3.3 Exercises 118<br/><br/>7.4 The Effect of Exposure on Frequency 120<br/><br/>7.5 An Inventory of Discrete Distributions 121<br/><br/>7.5.1 Exercises 122<br/><br/>8 Frequency and Severity with Coverage Modifications 125<br/><br/>8.1 Introduction 125<br/><br/>8.2 Deductibles 126<br/><br/>8.2.1 Exercises 131<br/><br/>8.3 The Loss Elimination Ratio and the Effect of Inflation for Ordinary Deductibles 132<br/><br/>8.3.1 Exercises 133<br/><br/>8.4 Policy Limits 134<br/><br/>8.4.1 Exercises 136<br/><br/>8.5 Coinsurance, Deductibles, and Limits 136<br/><br/>8.5.1 Exercises 138<br/><br/>8.6 The Impact of Deductibles on Claim Frequency 140<br/><br/>8.6.1 Exercises 144<br/><br/>9 Aggregate Loss Models 147<br/><br/>9.1 Introduction 147<br/><br/>9.1.1 Exercises 150<br/><br/>9.2 Model Choices 150<br/><br/>9.2.1 Exercises 151<br/><br/>9.3 The Compound Model for Aggregate Claims 151<br/><br/>9.3.1 Probabilities and Moments 152<br/><br/>9.3.2 Stop-Loss Insurance 157<br/><br/>9.3.3 The Tweedie Distribution 159<br/><br/>9.3.4 Exercises 160<br/><br/>9.4 Analytic Results 167<br/><br/>9.4.1 Exercises 170<br/><br/>9.5 Computing the Aggregate Claims Distribution 171<br/><br/>9.6 The Recursive Method 173<br/><br/>9.6.1 Applications to Compound Frequency Models 175<br/><br/>9.6.2 Underflow/Overflow Problems 177<br/><br/>9.6.3 Numerical Stability 178<br/><br/>9.6.4 Continuous Severity 178<br/><br/>9.6.5 Constructing Arithmetic Distributions 179<br/><br/>9.6.6 Exercises 182<br/><br/>9.7 The Impact of Individual Policy Modifications on Aggregate Payments 186<br/><br/>9.7.1 Exercises 189<br/><br/>9.8 The Individual Risk Model 189<br/><br/>9.8.1 The Model 189<br/><br/>9.8.2 Parametric Approximation 191<br/><br/>9.8.3 Compound Poisson Approximation 193<br/><br/>9.8.4 Exercises 195<br/><br/>Part III Mathematical Statistics<br/><br/>10 Introduction to Mathematical Statistics 201<br/><br/>10.1 Introduction and Four Data Sets 201<br/><br/>10.2 Point Estimation 203<br/><br/>10.2.1 Introduction 203<br/><br/>10.2.2 Measures of Quality 204<br/><br/>10.2.3 Exercises 214<br/><br/>10.3 Interval Estimation 216<br/><br/>10.3.1 Exercises 218<br/><br/>10.4 The Construction of Parametric Estimators 218<br/><br/>10.4.1 The Method of Moments and Percentile Matching 218<br/><br/>10.4.2 Exercises 221<br/><br/>10.5 Tests of Hypotheses 224<br/><br/>10.5.1 Exercise 228<br/><br/>11 Maximum Likelihood Estimation 229<br/><br/>11.1 Introduction 229<br/><br/>11.2 Individual Data 231<br/><br/>11.2.1 Exercises 232<br/><br/>11.3 Grouped Data 235<br/><br/>11.3.1 Exercises 236<br/><br/>11.4 Truncated or Censored Data 236<br/><br/>11.4.1 Exercises 241<br/><br/>11.5 Variance and Interval Estimation for Maximum Likelihood Estimators 242<br/><br/>11.5.1 Exercises 247<br/><br/>11.6 Functions of Asymptotically Normal Estimators 248<br/><br/>11.6.1 Exercises 250<br/><br/>11.7 Nonnormal Confidence Intervals 251<br/><br/>11.7.1 Exercise 253<br/><br/>12 Frequentist Estimation for Discrete Distributions 255<br/><br/>12.1 The Poisson Distribution 255<br/><br/>12.2 The Negative Binomial Distribution 259<br/><br/>12.3 The Binomial Distribution 261<br/><br/>12.4 The (š¯‘ˇ, š¯‘¸, 1) Class 264<br/><br/>12.5 Compound Models 268<br/><br/>12.6 The Effect of Exposure on Maximum Likelihood Estimation 269<br/><br/>12.7 Exercises 270<br/><br/>13 Bayesian Estimation 275<br/><br/>13.1 Definitions and Bayesā€™ Theorem 275<br/><br/>13.2 Inference and Prediction 279<br/><br/>13.2.1 Exercises 285<br/><br/>13.3 Conjugate Prior Distributions and the Linear Exponential Family 290<br/><br/>13.3.1 Exercises 291<br/><br/>13.4 Computational Issues 292<br/><br/>Part IV Construction of Models<br/><br/>14 Construction of Empirical Models 295<br/><br/>14.1 The Empirical Distribution 295<br/><br/>14.2 Empirical Distributions for Grouped Data 300<br/><br/>14.2.1 Exercises 301<br/><br/>14.3 Empirical Estimation with Right Censored Data 304<br/><br/>14.3.1 Exercises 316<br/><br/>14.4 Empirical Estimation of Moments 320<br/><br/>14.4.1 Exercises 326<br/><br/>14.5 Empirical Estimation with Left Truncated Data 327<br/><br/>14.5.1 Exercises 331<br/><br/>14.6 Kernel Density Models 332<br/><br/>14.6.1 Exercises 336<br/><br/>14.7 Approximations for Large Data Sets 337<br/><br/>14.7.1 Introduction 337<br/><br/>14.7.2 Using Individual Data Points 339<br/><br/>14.7.3 Interval-Based Methods 342<br/><br/>14.7.4 Exercises 346<br/><br/>14.8 Maximum Likelihood Estimation of Decrement Probabilities 347<br/><br/>14.8.1 Exercise 349<br/><br/>14.9 Estimation of Transition Intensities 350<br/><br/>15 Model Selection 353<br/><br/>15.1 Introduction 353<br/><br/>15.2 Representations of the Data and Model 354<br/><br/>15.3 Graphical Comparison of the Density and Distribution Functions 355<br/><br/>15.3.1 Exercises 360<br/><br/>15.4 Hypothesis Tests 360<br/><br/>15.4.1 The Kolmogorovā€“Smirnov Test 360<br/><br/>15.4.2 The Andersonā€“Darling Test 363<br/><br/>15.4.3 The Chi-Square Goodness-of-Fit Test 363<br/><br/>15.4.4 The Likelihood Ratio Test 367<br/><br/>15.4.5 Exercises 369<br/><br/>15.5 Selecting a Model 371<br/><br/>15.5.1 Introduction 371<br/><br/>15.5.2 Judgment-Based Approaches 372<br/><br/>15.5.3 Score-Based Approaches 373<br/><br/>15.5.4 Exercises 381<br/><br/>Part V Credibility<br/><br/>16 Introduction to Limited Fluctuation Credibility 387<br/><br/>16.1 Introduction 387<br/><br/>16.2 Limited Fluctuation Credibility Theory 389<br/><br/>16.3 Full Credibility 390<br/><br/>16.4 Partial Credibility 393<br/><br/>16.5 Problems with the Approach 397<br/><br/>16.6 Notes and References 397<br/><br/>16.7 Exercises 397<br/><br/>17 Greatest Accuracy Credibility 401<br/><br/>17.1 Introduction 401<br/><br/>17.2 Conditional Distributions and Expectation 404<br/><br/>17.3 The Bayesian Methodology 408<br/><br/>17.4 The Credibility Premium 415<br/><br/>17.5 The BĆ¼hlmann Model 418<br/><br/>17.6 The BĆ¼hlmannā€“Straub Model 422<br/><br/>17.7 Exact Credibility 427<br/><br/>17.8 Notes and References 431<br/><br/>17.9 Exercises 432<br/><br/>18 Empirical Bayes Parameter Estimation 445<br/><br/>18.1 Introduction 445<br/><br/>18.2 Nonparametric Estimation 448<br/><br/>18.3 Semiparametric Estimation 459<br/><br/>18.4 Notes and References 460<br/><br/>18.5 Exercises 460<br/><br/>Part VI Simulation<br/><br/>19 Simulation 467<br/><br/>19.1 Basics of Simulation 467<br/><br/>19.1.1 The Simulation Approach 468<br/><br/>19.1.2 Exercises 472<br/><br/>19.2 Simulation for Specific Distributions 472<br/><br/>19.2.1 Discrete Mixtures 472<br/><br/>19.2.2 Time or Age of Death from a Life Table 473<br/><br/>19.2.3 Simulating from the (š¯‘ˇ, š¯‘¸, 0) Class 474<br/><br/>19.2.4 Normal and Lognormal Distributions 476<br/><br/>19.2.5 Exercises 477<br/><br/>19.3 Determining the Sample Size 477<br/><br/>19.3.1 Exercises 479<br/><br/>19.4 Examples of Simulation in Actuarial Modeling 480<br/><br/>19.4.1 Aggregate Loss Calculations 480<br/><br/>19.4.2 Examples of Lack of Independence 480<br/><br/>19.4.3 Simulation Analysis of the Two Examples 481<br/><br/>19.4.4 The Use of Simulation to Determine Risk Measures 484<br/><br/>19.4.5 Statistical Analyses 484<br/><br/>19.4.6 Exercises 486<br/><br/>A An Inventory of Continuous Distributions 489<br/><br/>A.1 Introduction 489<br/><br/>A.2 The Transformed Beta Family 493<br/><br/>A.2.1 The Four-Parameter Distribution 493<br/><br/>A.2.2 Three-Parameter Distributions 493<br/><br/>A.2.3 Two-Parameter Distributions 494<br/><br/>A.3 The Transformed Gamma Family 496<br/><br/>A.3.1 Three-Parameter Distributions 496<br/><br/>A.3.2 Two-Parameter Distributions 497<br/><br/>A.3.3 One-Parameter Distributions 499<br/><br/>A.4 Distributions for Large Losses 499<br/><br/>A.4.1 Extreme Value Distributions 499<br/><br/>A.4.2 Generalized Pareto Distributions 500<br/><br/>A.5 Other Distributions 501<br/><br/>A.6 Distributions with Finite Support 502<br/><br/>B An Inventory of Discrete Distributions 505<br/><br/>B.1 Introduction 505<br/><br/>B.2 The (š¯‘ˇ, š¯‘¸, 0) Class 506<br/><br/>B.3 The (š¯‘ˇ, š¯‘¸, 1) Class 507<br/><br/>B.3.1 The Zero-Truncated Subclass 507<br/><br/>B.3.2 The Zero-Modified Subclass 509<br/><br/>B.4 The Compound Class 509<br/><br/>B.4.1 Some Compound Distributions 510<br/><br/>B.5 A Hierarchy of Discrete Distributions 511<br/><br/>C Frequency and Severity Relationships 513<br/><br/>D The Recursive Formula 515<br/><br/>E Discretization of the Severity Distribution 517<br/><br/>E.1 The Method of Rounding 517<br/><br/>E.2 Mean Preserving 518<br/><br/>E.3 Undiscretization of a Discretized Distribution 518<br/><br/>References 521<br/><br/>Index 529
650 #0 - Subject
Subject Insurance
650 #0 - Subject
Subject Insurance
700 1# - Added Entry Personal Name
Added Entry Personal Name Panjer, Harry H.,
Relator Code auth.
700 1# - Added Entry Personal Name
Added Entry Personal Name Willmot, Gordon E.,
Relator Code auth.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type REFERENCE STATISTICS
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Koha collection Location (home branch) Sublocation or collection (holding branch) Shelving location Date acquired Source of acquisition Serial Enumeration / chronology Koha issues (times borrowed) Koha full call number Barcode (Accession No.) Koha date last seen Copy Number Price effective from Koha item type
    Dewey Decimal Classification   Not For Loan Reference St. Xavier's University, Kolkata St. Xavier's University, Kolkata Reference Section 05/19/2023 Segment book distributors S.X.U.K   R 368.01 KLU(LOS)Ed5 US9603 05/19/2023 9603 05/19/2023 REFERENCE STATISTICS
St. Xaviers University, Kolkata
St. Xavier's University, Kolkata ,Action Area III B, New Town, Kolkata - 700 160


OPAC Customized by Avior Technologies Private Limited
mail@aviortechnologies.co.in