St. Xavier's University, Kolkata
Fr. Arrupe Central Library
Online Public Access Catalogue

Time series analysis : (Record no. 9974)

MARC details
000 -LEADER
fixed length control field 07875cam a2200301 i 4500
005 - DATE & TIME
control field 20230724154747.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 150417s2016 njua b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2015015492
020 ## - ISBN
International Standard Book Number 9781118675021
Price 13,777.00
040 ## - CATALOGING SOURCE
Original cataloging agency S.X.U.K
041 ## - Language
Language English
082 00 - DDC NUMBER
Classification number R 519.55 TIM
245 10 - TITLE STATEMENT
Title Time series analysis :
Sub Title forecasting and control.
Statement of responsibility George E.P. Box, Gwilym M. Jenkins, Georgory C. Reinsel, Greta M. Ljung
250 ## - EDITION STATEMENT
Edition statement 5th ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc New Jersey
Name of publisher, distributor, etc John Wiley
Date of publication, distribution, etc 2016
300 ## - PHYSICAL DESCRIPTION
Pages xxvi, 669 pages :
Other Details illustrations ;
Dimension 26 cm.H.B.
440 ## - Series Statement
Series Title Wiley Series in Probability and Statistics
500 ## - GENERAL NOTE
General note TABLE OF CONTENTS<br/>PREFACE TO THE FIFTH EDITION xix<br/><br/>PREFACE TO THE FOURTH EDITION xxiii<br/><br/>PREFACE TO THE THIRD EDITION xxv<br/><br/>1 Introduction 1<br/><br/>1.1 Five Important Practical Problems 2<br/><br/>1.2 Stochastic and Deterministic Dynamic Mathematical Models 6<br/><br/>1.3 Basic Ideas in Model Building 14<br/><br/>Appendix A1.1 Use of the R Software 17<br/><br/>Exercises 18<br/><br/>PART ONE STOCHASTIC MODELS AND THEIR FORECASTING 19<br/><br/>2 Autocorrelation Function and Spectrum of Stationary Processes 21<br/><br/>2.1 Autocorrelation Properties of Stationary Models 21<br/><br/>2.2 Spectral Properties of Stationary Models 34<br/><br/>Appendix A2.1 Link Between the Sample Spectrum and Autocovariance<br/><br/>Function Estimate 43<br/><br/>Exercises 44<br/><br/>3 Linear Stationary Models 47<br/><br/>3.1 General Linear Process 47<br/><br/>3.2 Autoregressive Processes 54<br/><br/>3.3 Moving Average Processes 68<br/><br/>3.4 Mixed Autoregressive--Moving Average Processes 75<br/><br/>Appendix A3.1 Autocovariances Autocovariance Generating Function and Stationarity Conditions for a General Linear Process 82<br/><br/>Appendix A3.2 Recursive Method for Calculating Estimates of Autoregressive Parameters 84<br/><br/>Exercises 86<br/><br/>4 Linear Nonstationary Models 88<br/><br/>4.1 Autoregressive Integrated Moving Average Processes 88<br/><br/>4.2 Three Explicit Forms for the ARIMA Model 97<br/><br/>4.3 Integrated Moving Average Processes 106<br/><br/>Appendix A4.1 Linear Difference Equations 116<br/><br/>Appendix A4.2 IMA(0 1 1) Process with Deterministic Drift 121<br/><br/>Appendix A4.3 ARIMA Processes with Added Noise 122<br/><br/>Exercises 126<br/><br/>5 Forecasting 129<br/><br/>5.1 Minimum Mean Square Error Forecasts and Their Properties 129<br/><br/>5.2 Calculating Forecasts and Probability Limits 135<br/><br/>5.3 Forecast Function and Forecast Weights 139<br/><br/>5.4 Examples of Forecast Functions and Their Updating 144<br/><br/>5.5 Use of State-Space Model Formulation for Exact Forecasting 155<br/><br/>5.6 Summary 162<br/><br/>Appendix A5.1 Correlation Between Forecast Errors 164<br/><br/>Appendix A5.2 Forecast Weights for any Lead Time 166<br/><br/>Appendix A5.3 Forecasting in Terms of the General Integrated Form 168<br/><br/>Exercises 174<br/><br/>PART TWO STOCHASTIC MODEL BUILDING 177<br/><br/>6 Model Identification 179<br/><br/>6.1 Objectives of Identification 179<br/><br/>6.2 Identification Techniques 180<br/><br/>6.3 Initial Estimates for the Parameters 194<br/><br/>6.4 Model Multiplicity 202<br/><br/>Appendix A6.1 Expected Behavior of the Estimated Autocorrelation Function for a Nonstationary Process 206<br/><br/>Exercises 207<br/><br/>7 Parameter Estimation 209<br/><br/>7.1 Study of the Likelihood and Sum-of-Squares Functions 209<br/><br/>7.2 Nonlinear Estimation 226<br/><br/>7.3 Some Estimation Results for Specific Models 236<br/><br/>7.4 Likelihood Function Based on the State-Space Model 242<br/><br/>7.5 Estimation Using Bayes’ Theorem 245<br/><br/>Appendix A7.1 Review of Normal Distribution Theory 251<br/><br/>Appendix A7.2 Review of Linear Least-Squares Theory 256<br/><br/>Appendix A7.3 Exact Likelihood Function for Moving Average and Mixed Processes 259<br/><br/>Appendix A7.4 Exact Likelihood Function for an Autoregressive Process 266<br/><br/>Appendix A7.5 Asymptotic Distribution of Estimators for Autoregressive Models 274<br/><br/>Appendix A7.6 Examples of the Effect of Parameter Estimation Errors on Variances of Forecast Errors and Probability Limits for Forecasts 277<br/><br/>Appendix A7.7 Special Note on Estimation ofMoving Average Parameters 280<br/><br/>Exercises 280<br/><br/>8 Model Diagnostic Checking 284<br/><br/>8.1 Checking the Stochastic Model 284<br/><br/>8.2 Diagnostic Checks Applied to Residuals 287<br/><br/>8.3 Use of Residuals to Modify the Model 301<br/><br/>Exercises 303<br/><br/>9 Analysis of Seasonal Time Series 305<br/><br/>9.1 Parsimonious Models for Seasonal Time Series 305<br/><br/>9.2 Representation of the Airline Data by a Multiplicative (0 1 1) × (0 1 1)12 Model 310<br/><br/>9.3 Some Aspects of More General Seasonal ARIMA Models 325<br/><br/>9.4 Structural Component Models and Deterministic Seasonal Components 331<br/><br/>9.5 Regression Models with Time Series Error Terms 339<br/><br/>Appendix A9.1 Autocovariances for Some Seasonal Models 345<br/><br/>Exercises 349<br/><br/>10 Additional Topics and Extensions 352<br/><br/>10.1 Tests for Unit Roots in ARIMA Models 353<br/><br/>10.2 Conditional Heteroscedastic Models 361<br/><br/>10.3 Nonlinear Time Series Models 377<br/><br/>10.4 Long Memory Time Series Processes 385<br/><br/>Exercises 392<br/><br/>PART THREE TRANSFER FUNCTION AND MULTIVARIATE MODEL BUILDING 395<br/><br/>11 Transfer Function Models 397<br/><br/>11.1 Linear Transfer Function Models 397<br/><br/>11.2 Discrete Dynamic Models Represented by Difference Equations 404<br/><br/>11.3 Relation Between Discrete and Continuous Models 414<br/><br/>Appendix A11.1 Continuous Models with Pulsed Inputs 420<br/><br/>Appendix A11.2 Nonlinear Transfer Functions and Linearization 424<br/><br/>Exercises 426<br/><br/>12 Identification Fitting and Checking of Transfer Function Models 428<br/><br/>12.1 Cross-Correlation Function 429<br/><br/>12.2 Identification of Transfer Function Models 435<br/><br/>12.3 Fitting and Checking Transfer Function Models 446<br/><br/>12.4 Some Examples of Fitting and Checking Transfer Function Models 453<br/><br/>12.5 Forecasting with Transfer FunctionModels Using Leading Indicators 461<br/><br/>12.6 Some Aspects of the Design of Experiments to Estimate Transfer Functions 469<br/>Appendix A12.1 Use of Cross-Spectral Analysis for Transfer Function Model Identification 471<br/><br/>Appendix A12.2 Choice of Input to Provide Optimal Parameter Estimates 473<br/><br/>Exercises 477<br/><br/>13 Intervention Analysis Outlier Detection and Missing Values 481<br/><br/>13.1 Intervention Analysis Methods 481<br/><br/>13.2 Outlier Analysis for Time Series 488<br/><br/>13.3 Estimation for ARMA Models with Missing Values 495<br/><br/>Exercises 502<br/><br/>14 Multivariate Time Series Analysis 505<br/><br/>14.1 Stationary Multivariate Time Series 506<br/><br/>14.2 Vector Autoregressive Models 509<br/><br/>14.3 Vector Moving Average Models 524<br/><br/>14.4 Vector Autoregressive--Moving Average Models 527<br/><br/>14.5 Forecasting for Vector Autoregressive--Moving Average Processes 534<br/><br/>14.6 State-Space Form of the VARMA Model 536<br/><br/>14.7 Further Discussion of VARMA Model Specification 539<br/><br/>14.8 Nonstationarity and Cointegration 546<br/><br/>Appendix A14.1 Spectral Characteristics and Linear Filtering Relations for Stationary Multivariate Processes 552<br/><br/>Exercises 554<br/><br/>PART FOUR DESIGN OF DISCRETE CONTROL SCHEMES 559<br/><br/>15 Aspects of Process Control 561<br/><br/>15.1 Process Monitoring and Process Adjustment 562<br/><br/>15.2 Process Adjustment Using Feedback Control 566<br/><br/>15.3 Excessive Adjustment Sometimes Required by MMSE Control 580<br/><br/>15.4 Minimum Cost Control with Fixed Costs of Adjustment and Monitoring 582<br/><br/>15.5 Feedforward Control 588<br/><br/>15.6 Monitoring Values of Parameters of Forecasting and Feedback Adjustment Schemes 599<br/><br/>Appendix A15.1 Feedback Control Schemes Where the Adjustment Variance Is Restricted 600<br/><br/>Appendix A15.2 Choice of the Sampling Interval 609<br/><br/>Exercises 613<br/><br/>PART FIVE CHARTS AND TABLES 617<br/><br/>COLLECTION OF TABLES AND CHARTS 619<br/><br/>COLLECTION OF TIME SERIES USED FOR EXAMPLES IN THE TEXT AND IN EXERCISES 625<br/><br/>REFERENCES 642<br/><br/>INDEX 659
650 #0 - Subject
Subject Time-series analysis.
650 #0 - Subject
Subject Prediction theory.
650 #0 - Subject
Subject Transfer functions.
650 #0 - Subject
Subject Feedback control systems
700 1# - Added Entry Personal Name
Added Entry Personal Name Box, George E.P.
Relator Code auth.
700 1# - Added Entry Personal Name
Added Entry Personal Name Jenkins, Gwilym M.
Relator Code auth.
700 1# - Added Entry Personal Name
Added Entry Personal Name Reinsel, Gregory C.
Relator Code auth.
700 1# - Added Entry Personal Name
Added Entry Personal Name Ljung, Greta M.,
Relator Code auth.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type REFERENCE STATISTICS
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Location (home branch) Sublocation or collection (holding branch) Shelving location Date acquired Source of acquisition Serial Enumeration / chronology Koha full call number Barcode (Accession No.) Koha date last seen Copy Number Price effective from Koha item type Koha collection Cost, normal purchase price Koha issues (times borrowed)
    Dewey Decimal Classification   Not For Loan St. Xavier's University, Kolkata St. Xavier's University, Kolkata Reference Section 07/24/2023 K.M. Enterprise S.X.U.K R 519.55 TIM.Ed5 US9907 07/24/2023 9907 07/24/2023 REFERENCE STATISTICS      
    Dewey Decimal Classification   Not For Loan St. Xavier's University, Kolkata St. Xavier's University, Kolkata Reference Section 09/25/2023 SEGMENT   R 519.55 TIM.Ed5.C1 US10370 09/25/2023 10370 09/25/2023 REFERENCE STATISTICS Reference 13745.13  
St. Xaviers University, Kolkata
St. Xavier's University, Kolkata ,Action Area III B, New Town, Kolkata - 700 160


OPAC Customized by Avior Technologies Private Limited
mail@aviortechnologies.co.in