St. Xavier's University, Kolkata
Fr. Arrupe Central Library
Online Public Access Catalogue
Amazon cover image
Image from Amazon.com

The elements of statistical learning : data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman.

By: Contributor(s): Material type: TextTextLanguage: English Publication details: New York, NY : Springer, c2009.Edition: 2nd edDescription: xxii, 745 p. : ill. (some col.) ; H.B. 25 cmISBN:
  • 9780387848570 (hardcover : alk. paper)
  • 9780387848587 (electronic)
Subject(s): DDC classification:
  • R 006.31 TRE(ELE)Ed2
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Vol info Copy number Status Date due Barcode
REFERENCE STATISTICS REFERENCE STATISTICS St. Xavier's University, Kolkata Reference Section Reference R 006.31 TRE(ELE)Ed2 (Browse shelf(Opens below)) S.X.U.K 10608 Not For Loan US10608
STATISTICS STATISTICS St. Xavier's University, Kolkata Lending Section 006.31 TRE(ELE)Ed2 (Browse shelf(Opens below)) S.X.U.K 10609 Checked out 01/22/2025 S10609
STATISTICS STATISTICS St. Xavier's University, Kolkata Lending Section 006.31 TRE(ELE)Ed2.C1 (Browse shelf(Opens below)) S.X.U.K 10610 Available S10610
Total holds: 0

Introduction
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 1-8
Overview of Supervised Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 9-41
Linear Methods for Regression
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 43-99
Linear Methods for Classification
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 101-137
Basis Expansions and Regularization
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 139-189
Kernel Smoothing Methods
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 191-218
Model Assessment and Selection
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 219-259
Model Inference and Averaging
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 261-294
Additive Models, Trees, and Related Methods
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 295-336
Boosting and Additive Trees
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 337-387
Neural Networks
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 389-416
Support Vector Machines and Flexible Discriminants
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 417-458
Prototype Methods and Nearest-Neighbors
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 459-483
Unsupervised Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 485-585
Random Forests
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 587-604
Ensemble Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 605-624
Undirected Graphical Models
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 625-648
High-Dimensional Problems: p N
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 649-698
Back Matter

There are no comments on this title.

to post a comment.
St. Xaviers University, Kolkata
St. Xavier's University, Kolkata ,Action Area III B, New Town, Kolkata - 700 160


OPAC Customized by Avior Technologies Private Limited
mail@aviortechnologies.co.in