St. Xavier's University, Kolkata
Fr. Arrupe Central Library
Online Public Access Catalogue
Amazon cover image
Image from Amazon.com

Hands-on machine learning with scikit-learn, keras, and tensorflow : concepts, tools, and techniques to build intelligent systems Aurelien Geron

By: Material type: TextTextLanguage: English Publication details: New Delhi Shroff publishers & distributors 2022Edition: 3rd edDescription: xxv, 834 P.BISBN:
  • 9789355421982
Subject(s): DDC classification:
  • 006.31 GER(HAN)Ed3
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Barcode
REFERENCE COMPUTER SCIENCE REFERENCE COMPUTER SCIENCE St. Xavier's University, Kolkata Reference Section Reference R 006.31 GER(HAN)Ed3 (Browse shelf(Opens below)) 11701 Not For Loan UCS11701
COMPUTER SCIENCE COMPUTER SCIENCE St. Xavier's University, Kolkata Lending Section 006.31 GER(HAN)Ed3 (Browse shelf(Opens below)) 11702 Available CS11702
COMPUTER SCIENCE COMPUTER SCIENCE St. Xavier's University, Kolkata Lending Section 006.31 GER(HAN)Ed3.C1 (Browse shelf(Opens below)) 11703 Available CS11703
Total holds: 0

Part I. The Fundamentals of Machine Learning
1. The Machine Learning Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What Is Machine Learning? 2
Why Use Machine Learning? 2
Examples of Applications 5
Types of Machine Learning Systems 7
Supervised/Unsupervised Learning 7
Batch and Online Learning 14
Instance-Based Versus Model-Based Learning 17
Main Challenges of Machine Learning 23
Insufficient Quantity of Training Data 23
Nonrepresentative Training Data 25
Poor-Quality Data 26
Irrelevant Features 27
Overfitting the Training Data 27
Underfitting the Training Data 29
Stepping Back 30
Testing and Validating 30
Hyperparameter Tuning and Model Selection 31
Data Mismatch 32
Exercises 33
2. End-to-End Machine Learning Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Working with Real Data 35
iii
Look at the Big Picture 37
Frame the Problem 37
Select a Performance Measure 39
Check the Assumptions 42
Get the Data 42
Create the Workspace 42
Download the Data 46
Take a Quick Look at the Data Structure 47
Create a Test Set 51
Discover and Visualize the Data to Gain Insights 56
Visualizing Geographical Data 56
Looking for Correlations 58
Experimenting with Attribute Combinations 61
Prepare the Data for Machine Learning Algorithms 62
Data Cleaning 63
Handling Text and Categorical Attributes 65
Custom Transformers 68
Feature Scaling 69
Transformation Pipelines 70
Select and Train a Model 72
Training and Evaluating on the Training Set 72
Better Evaluation Using Cross-Validation 73
Fine-Tune Your Model 75
Grid Search 76
Randomized Search 78
Ensemble Methods 78
Analyze the Best Models and Their Errors 78
Evaluate Your System on the Test Set 79
Launch, Monitor, and Maintain Your System 80
Try It Out! 83
Exercises 84
3. Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
MNIST 85
Training a Binary Classifier 88
Performance Measures 88
Measuring Accuracy Using Cross-Validation 89
Confusion Matrix 90
Precision and Recall 92
Precision/Recall Trade-off 93
The ROC Curve 97
Multiclass Classification 100
iv | Table of Contents
Error Analysis 102
Multilabel Classification 106
Multioutput Classification 107
Exercises 108
4. Training Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Linear Regression 112
The Normal Equation 114
Computational Complexity 117
Gradient Descent 118
Batch Gradient Descent 121
Stochastic Gradient Descent 124
Mini-batch Gradient Descent 127
Polynomial Regression 128
Learning Curves 130
Regularized Linear Models 134
Ridge Regression 135
Lasso Regression 137
Elastic Net 140
Early Stopping 141
Logistic Regression 142
Estimating Probabilities 143
Training and Cost Function 144
Decision Boundaries 145
Softmax Regression 148
Exercises 151
5. Support Vector Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Linear SVM Classification 153
Soft Margin Classification 154
Nonlinear SVM Classification 157
Polynomial Kernel 158
Similarity Features 159
Gaussian RBF Kernel 160
Computational Complexity 162
SVM Regression 162
Under the Hood 164
Decision Function and Predictions 165
Training Objective 166
Quadratic Programming 167
The Dual Problem 168
Kernelized SVMs 169
Table of Contents | v
Online SVMs 172
Exercises 174
6. Decision Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Training and Visualizing a Decision Tree 175
Making Predictions 176
Estimating Class Probabilities 178
The CART Training Algorithm 179
Computational Complexity 180
Gini Impurity or Entropy? 180
Regularization Hyperparameters 181
Regression 183
Instability 185
Exercises 186
7. Ensemble Learning and Random Forests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Voting Classifiers 189
Bagging and Pasting 192
Bagging and Pasting in Scikit-Learn 194
Out-of-Bag Evaluation 195
Random Patches and Random Subspaces 196
Random Forests 197
Extra-Trees 198
Feature Importance 198
Boosting 199
AdaBoost 200
Gradient Boosting 203
Stacking 208
Exercises 211
8. Dimensionality Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
The Curse of Dimensionality 214
Main Approaches for Dimensionality Reduction 215
Projection 215
Manifold Learning 218
PCA 219
Preserving the Variance 219
Principal Components 220
Projecting Down to d Dimensions 221
Using Scikit-Learn 222
Explained Variance Ratio 222
Choosing the Right Number of Dimensions 223
vi | Table of Contents
PCA for Compression 224
Randomized PCA 225
Incremental PCA 225
Kernel PCA 226
Selecting a Kernel and Tuning Hyperparameters 227
LLE 230
Other Dimensionality Reduction Techniques 232
Exercises 233
9. Unsupervised Learning Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Clustering 236
K-Means 238
Limits of K-Means 248
Using Clustering for Image Segmentation 249
Using Clustering for Preprocessing 251
Using Clustering for Semi-Supervised Learning 253
DBSCAN 255
Other Clustering Algorithms 258
Gaussian Mixtures 260
Anomaly Detection Using Gaussian Mixtures 266
Selecting the Number of Clusters 267
Bayesian Gaussian Mixture Models 270
Other Algorithms for Anomaly and Novelty Detection 274
Exercises 275
Part II. Neural Networks and Deep Learning
10. Introduction to Artificial Neural Networks with Keras. . . . . . . . . . . . . . . . . . . . . . . . . . 279
From Biological to Artificial Neurons 280
Biological Neurons 281
Logical Computations with Neurons 283
The Perceptron 284
The Multilayer Perceptron and Backpropagation 289
Regression MLPs 292
Classification MLPs 294
Implementing MLPs with Keras 295
Installing TensorFlow 2 296
Building an Image Classifier Using the Sequential API 297
Building a Regression MLP Using the Sequential API 307
Building Complex Models Using the Functional API 308
Using the Subclassing API to Build Dynamic Models 313
Table of Contents | vii
Saving and Restoring a Model 314
Using Callbacks 315
Using TensorBoard for Visualization 317
Fine-Tuning Neural Network Hyperparameters 320
Number of Hidden Layers 323
Number of Neurons per Hidden Layer 325
Learning Rate, Batch Size, and Other Hyperparameters 325
Exercises 327
11. Training Deep Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
The Vanishing/Exploding Gradients Problems 332
Glorot and He Initialization 333
Nonsaturating Activation Functions 335
Batch Normalization 338
Gradient Clipping 345
Reusing Pretrained Layers 345
Transfer Learning with Keras 347
Unsupervised Pretraining 349
Pretraining on an Auxiliary Task 350
Faster Optimizers 351
Momentum Optimization 351
Nesterov Accelerated Gradient 353
AdaGrad 354
RMSProp 355
Adam and Nadam Optimization 356
Learning Rate Scheduling 359
Avoiding Overfitting Through Regularization 364
ℓ1
and ℓ2
Regularization 364
Dropout 365
Monte Carlo (MC) Dropout 368
Max-Norm Regularization 370
Summary and Practical Guidelines 371
Exercises 373
12. Custom Models and Training with TensorFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
A Quick Tour of TensorFlow 376
Using TensorFlow like NumPy 379
Tensors and Operations 379
Tensors and NumPy 381
Type Conversions 381
Variables 382
Other Data Structures 383
viii | Table of Contents
Customizing Models and Training Algorithms 384
Custom Loss Functions 384
Saving and Loading Models That Contain Custom Components 385
Custom Activation Functions, Initializers, Regularizers, and Constraints 387
Custom Metrics 388
Custom Layers 391
Custom Models 394
Losses and Metrics Based on Model Internals 397
Computing Gradients Using Autodiff 399
Custom Training Loops 402
TensorFlow Functions and Graphs 405
AutoGraph and Tracing 407
TF Function Rules 409
Exercises 410
13. Loading and Preprocessing Data with TensorFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
The Data API 414
Chaining Transformations 415
Shuffling the Data 416
Preprocessing the Data 419
Putting Everything Together 420
Prefetching 421
Using the Dataset with tf.keras 423
The TFRecord Format 424
Compressed TFRecord Files 425
A Brief Introduction to Protocol Buffers 425
TensorFlow Protobufs 427
Loading and Parsing Examples 428
Handling Lists of Lists Using the SequenceExample Protobuf 429
Preprocessing the Input Features 430
Encoding Categorical Features Using One-Hot Vectors 431
Encoding Categorical Features Using Embeddings 433
Keras Preprocessing Layers 437
TF Transform 439
The TensorFlow Datasets (TFDS) Project 441
Exercises 442
14. Deep Computer Vision Using Convolutional Neural Networks. . . . . . . . . . . . . . . . . . . 445
The Architecture of the Visual Cortex 446
Convolutional Layers 448
Filters 450
Stacking Multiple Feature Maps 451
Table of Contents | ix
TensorFlow Implementation 453
Memory Requirements 456
Pooling Layers 456
TensorFlow Implementation 458
CNN Architectures 460
LeNet-5 463
AlexNet 464
GoogLeNet 466
VGGNet 470
ResNet 471
Xception 474
SENet 476
Implementing a ResNet-34 CNN Using Keras 478
Using Pretrained Models from Keras 479
Pretrained Models for Transfer Learning 481
Classification and Localization 483
Object Detection 485
Fully Convolutional Networks 487
You Only Look Once (YOLO) 489
Semantic Segmentation 492
Exercises 496
15. Processing Sequences Using RNNs and CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Recurrent Neurons and Layers 498
Memory Cells 500
Input and Output Sequences 501
Training RNNs 502
Forecasting a Time Series 503
Baseline Metrics 505
Implementing a Simple RNN 505
Deep RNNs 506
Forecasting Several Time Steps Ahead 508
Handling Long Sequences 511
Fighting the Unstable Gradients Problem 512
Tackling the Short-Term Memory Problem 514
Exercises 523
16. Natural Language Processing with RNNs and Attention. . . . . . . . . . . . . . . . . . . . . . . . 525
Generating Shakespearean Text Using a Character RNN 526
Creating the Training Dataset 527
How to Split a Sequential Dataset 527
Chopping the Sequential Dataset into Multiple Windows 528
x | Table of Contents
Building and Training the Char-RNN Model 530
Using the Char-RNN Model 531
Generating Fake Shakespearean Text 531
Stateful RNN 532
Sentiment Analysis 534
Masking 538
Reusing Pretrained Embeddings 540
An Encoder–Decoder Network for Neural Machine Translation 542
Bidirectional RNNs 546
Beam Search 547
Attention Mechanisms 549
Visual Attention 552
Attention Is All You Need: The Transformer Architecture 554
Recent Innovations in Language Models 563
Exercises 565
17. Representation Learning and Generative Learning Using Autoencoders and GANs. 567
Efficient Data Representations 569
Performing PCA with an Undercomplete Linear Autoencoder 570
Stacked Autoencoders 572
Implementing a Stacked Autoencoder Using Keras 572
Visualizing the Reconstructions 574
Visualizing the Fashion MNIST Dataset 574
Unsupervised Pretraining Using Stacked Autoencoders 576
Tying Weights 577
Training One Autoencoder at a Time 578
Convolutional Autoencoders 579
Recurrent Autoencoders 580
Denoising Autoencoders 581
Sparse Autoencoders 582
Variational Autoencoders 586
Generating Fashion MNIST Images 590
Generative Adversarial Networks 592
The Difficulties of Training GANs 596
Deep Convolutional GANs 598
Progressive Growing of GANs 601
StyleGANs 604
Exercises 607
18. Reinforcement Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
Learning to Optimize Rewards 610
Policy Search 612
Table of Contents | xi
Introduction to OpenAI Gym 613
Neural Network Policies 617
Evaluating Actions: The Credit Assignment Problem 619
Policy Gradients 620
Markov Decision Processes 625
Temporal Difference Learning 629
Q-Learning 630
Exploration Policies 632
Approximate Q-Learning and Deep Q-Learning 633
Implementing Deep Q-Learning 634
Deep Q-Learning Variants 639
Fixed Q-Value Targets 639
Double DQN 640
Prioritized Experience Replay 640
Dueling DQN 641
The TF-Agents Library 642
Installing TF-Agents 643
TF-Agents Environments 643
Environment Specifications 644
Environment Wrappers and Atari Preprocessing 645
Training Architecture 649
Creating the Deep Q-Network 650
Creating the DQN Agent 652
Creating the Replay Buffer and the Corresponding Observer 654
Creating Training Metrics 655
Creating the Collect Driver 656
Creating the Dataset 658
Creating the Training Loop 661
Overview of Some Popular RL Algorithms 662
Exercises 664
19. Training and Deploying TensorFlow Models at Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Serving a TensorFlow Model 668
Using TensorFlow Serving 668
Creating a Prediction Service on GCP AI Platform 677
Using the Prediction Service 682
Deploying a Model to a Mobile or Embedded Device 685
Using GPUs to Speed Up Computations 689
Getting Your Own GPU 690
Using a GPU-Equipped Virtual Machine 692
Colaboratory 693
Managing the GPU RAM 694
xii | Table of Contents
Placing Operations and Variables on Devices 697
Parallel Execution Across Multiple Devices 699
Training Models Across Multiple Devices 701
Model Parallelism 701
Data Parallelism 704
Training at Scale Using the Distribution Strategies API 709
Training a Model on a TensorFlow Cluster 711
Running Large Training Jobs on Google Cloud AI Platform 714
Black Box Hyperparameter Tuning on AI Platform 716
Exercises 717
Thank You! 718
A. Exercise Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
B. Machine Learning Project Checklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
C. SVM Dual Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
D. Autodiff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
E. Other Popular ANN Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
F. Special Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
G. TensorFlow Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

There are no comments on this title.

to post a comment.
St. Xaviers University, Kolkata
St. Xavier's University, Kolkata ,Action Area III B, New Town, Kolkata - 700 160


OPAC Customized by Avior Technologies Private Limited
mail@aviortechnologies.co.in