The elements of statistical learning : data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman.
Material type: TextLanguage: English Publication details: New York, NY : Springer, c2009.Edition: 2nd edDescription: xxii, 745 p. : ill. (some col.) ; H.B. 25 cmISBN:- 9780387848570 (hardcover : alk. paper)
- 9780387848587 (electronic)
- R 006.31 TRE(ELE)Ed2
Item type | Current library | Collection | Call number | Vol info | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
REFERENCE STATISTICS | St. Xavier's University, Kolkata Reference Section | Reference | R 006.31 TRE(ELE)Ed2 (Browse shelf(Opens below)) | S.X.U.K | 10608 | Not For Loan | US10608 | ||
STATISTICS | St. Xavier's University, Kolkata Lending Section | 006.31 TRE(ELE)Ed2 (Browse shelf(Opens below)) | S.X.U.K | 10609 | Checked out | 01/22/2025 | S10609 | ||
STATISTICS | St. Xavier's University, Kolkata Lending Section | 006.31 TRE(ELE)Ed2.C1 (Browse shelf(Opens below)) | S.X.U.K | 10610 | Available | S10610 |
Introduction
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 1-8
Overview of Supervised Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 9-41
Linear Methods for Regression
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 43-99
Linear Methods for Classification
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 101-137
Basis Expansions and Regularization
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 139-189
Kernel Smoothing Methods
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 191-218
Model Assessment and Selection
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 219-259
Model Inference and Averaging
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 261-294
Additive Models, Trees, and Related Methods
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 295-336
Boosting and Additive Trees
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 337-387
Neural Networks
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 389-416
Support Vector Machines and Flexible Discriminants
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 417-458
Prototype Methods and Nearest-Neighbors
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 459-483
Unsupervised Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 485-585
Random Forests
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 587-604
Ensemble Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 605-624
Undirected Graphical Models
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 625-648
High-Dimensional Problems: p N
Trevor Hastie, Robert Tibshirani, Jerome Friedman
Pages 649-698
Back Matter
There are no comments on this title.